基于粒子群优化混合神经网络的船舶辅锅炉故障诊断

    Application of Particle Swarm Optimizer Neural Network in Fault Diagnosis for Marine Auxiliary Boiler

    • 摘要: 为适应智能船舶辅锅炉故障诊断智能化的新要求,提高船舶辅锅炉故障诊断的效率与准确率,采用神经网络对船舶辅锅炉故障进行诊断研究。将自组织特征映射神经网络和BP神经网络串联结合组成混合神经网络诊断模型来解决单一神经网络诊断模型存在的局限性。同时针对混合神经网络诊断模型中初始连接权值和节点阈值设置存在的缺陷,采用粒子群算法对混合神经网络诊断模型进行优化。选取阿法拉伐船用D型水管锅炉为研究对象,以DMS-VLCC型轮机模拟器中的船舶辅锅炉运行数据为试验数据来源,应用单一BP神经网络、混合神经网络和经粒子群优化的混合神经网络构建辅锅炉故障诊断模型并进行了试验对比研究。结果表明基于粒子群优化的混合神经网络诊断模型的诊断性能明显优于未优化混合神经网络和单一BP神经网络诊断模型,可为船舶辅锅炉的智能故障诊断提供一种新思路。

       

      Abstract: A mixed neural network diagnose model is constructed by integrating the self-organizing feature map network with a BP neural network in cascade.Meantime, the particle swarm optimizer is used to improve the initial connecting weighting and node dependent thresholding.An ALFA LAVAL D-type water tube boiler is taken as the objective machine for verification of the diagnosis model.The diagnosis model is tested with the data from the DMS VLCC marine engine room simulator.Same experiments are carried out with the sole BP neural network and the SOM-BP network for comparison.The advantage of the development is demonstrated.

       

    /

    返回文章
    返回