电力推进船舶仿真及能效优化方法
Simulation of Electrically-Propelled Ships and its Energy Efficiency Optimization
-
摘要: 为使电力推进船舶营运能效更佳,以“海洋石油301”轮为研究对象,对其动力源9L34DF双燃料柴油机和船机浆进行建模; 以欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)作为气象源数据,通过对气象数据读取和曲面插值,计算船舶通航环境风阻、波浪增阻。通过离散化思想对目标船航线进行划分,建立以航期、发电机出力约束和爬坡功率约束等条件下的最小船舶能效营运指数(Energy Efficiency Operation Index,EEOI)为目标函数,提出一种基于自适应粒子群算法(Landscape Particle Swarm Optimizer, LAPSO)的能效优化方法。分别采用LAPSO进行单一的功率优化调度, 功率调度与航速同时进行优化计算,与实船数据对比分析,结果表明:提出的仅功率优化调度可节省燃气0.6 t,EEOI降低约0.38%;功率与航速同时优化可节省燃气8.23 t,EEOI降低5.25%;验证了所提出的功率优化与航速同时优化方法的有效性,为智能船舶的智能能效提供辅助决策具有指导意义。Abstract: The research object is the electrically-propelled ship “Offshore Oil 301”. The power source, 9L34DF dual-fuel diesel engine and the main-engine-propeller system is modeled. The wind resistance and additive wave resistance during the voyage is estimated according to the data from European Centre for Medium Range Weather Forecasts (with surface interpolation). The route of the voyage is divided in segments according to the navigation situations. A landscape adaptive particle swarm optimizer is introduced to achieve minimum EEOI under the constraints of time schedule, generator capacity and Climbing capability. The LAPSO algorithm is used to optimize sole power control and power-speed combined control respectively. The results are compared to the actual voyage data, which shows that sole power control optimization saves fuel gas 0.6 t and reduces EEOI by 0.38% while the combined control achieves 8.23 t of fuel saving and 5.25% of EEOI reduction.