• 中文核心期刊
  • CSCD收录期刊
  • JST 收录期刊
  • 中国科技核心期刊
  • 中国科协高质量科技期刊T1级

基于TOPSIS和贝叶斯网络的液体化工码头设备安全风险评价模型研究

邓健, 杨港, 孙浩, 胡玉昌, 廖芳达

邓健, 杨港, 孙浩, 胡玉昌, 廖芳达. 基于TOPSIS和贝叶斯网络的液体化工码头设备安全风险评价模型研究[J]. 中国航海, 2023, 46(1): 73-79,87. DOI: 10.3969/j.issn.1000-4653.2023.01.010
引用本文: 邓健, 杨港, 孙浩, 胡玉昌, 廖芳达. 基于TOPSIS和贝叶斯网络的液体化工码头设备安全风险评价模型研究[J]. 中国航海, 2023, 46(1): 73-79,87. DOI: 10.3969/j.issn.1000-4653.2023.01.010
DENG Jian, YANG Gang, SUN Hao, HU Yu-chang, LIAO Fang-da. A risk evaluation model for facilities of liquid chemical terminal based on TOPSIS and Bayesian network[J]. Navigation of China, 2023, 46(1): 73-79,87. DOI: 10.3969/j.issn.1000-4653.2023.01.010
Citation: DENG Jian, YANG Gang, SUN Hao, HU Yu-chang, LIAO Fang-da. A risk evaluation model for facilities of liquid chemical terminal based on TOPSIS and Bayesian network[J]. Navigation of China, 2023, 46(1): 73-79,87. DOI: 10.3969/j.issn.1000-4653.2023.01.010

基于TOPSIS和贝叶斯网络的液体化工码头设备安全风险评价模型研究

基金项目: 

国家自然科学重点基金项目(52031009)

详细信息
    作者简介:

    邓健(1977—),男,副教授,博士,研究方向为水上交通与环境。E-mail:dengjian_whut@aliyun.com

  • 中图分类号: U653

A risk evaluation model for facilities of liquid chemical terminal based on TOPSIS and Bayesian network

  • 摘要: 液体化工码头设备安全对码头作业安全至关重要,为有效评估化工码头设备安全风险,提出了一种基于逼近理想解排序法(Technique for Order Preference by Similarity to an Ideal Solution, TOPSIS)和贝叶斯网络的安全风险评估方法。运用TOPSIS方法从24个指标中筛选出16个重要指标,构建了液体化工码头设备安全风险指标体系,基于贝叶斯网络方法建立设备安全风险评价拓扑结构,通过马尔科夫链蒙特卡洛算法完成贝叶斯网络节点概率推理过程,得到基于贝叶斯网络方法的液体化工码头设备安全风险评价模型。最后以长江干线某化工码头为研究对象开展风险评价,结果表明该码头设备整体风险等级为较低,4个设备子系统的风险概率从高到低的次序为管道设备、储存设备、机械设备和安全防护设备,管道设备风险等级相对较高,码头应针对管道设备做好风险管控措施。
    Abstract: TOPSIS and Bayesian network is introduced to the risk evaluation model for facilities of liquid chemical terminals. TOPSIS is used to screen the candidate risk indexes and 16 major indexes are identified to form the risk evaluation index system. The topography of the evaluation model is designed based on Bayesian network. The probabilistic inference concerning the nodes are fulfilled by Markov chain-Monte Carlo algorithm. The completed model is used, as an example, to evaluate the risks that a liquid chemical terminal at the Yangtze trunk line involves. The evaluation indicates that the risk level for the facilities is relatively low. The risk levels for facility subsystems are ranked as pipe system, storage facility, mechanical equipment and safety and protection equipment in descending order.
  • [1] 杨扬,韩天皞,袁媛,等.我国危险品物流现状与发展对策研究[J].中国物流与采购,2016(1):68-69.YANG Y,HAN T H,YUAN Y,et al.Research on the current situation and development countermeasures of China's dangerous goods logistics[J].China Logistics and Procurement,2016(1):68-69.(in Chinese)
    [2] 苏立亭.企业危险品仓储安全集成管理研究[D].西安:长安大学,2016.SU L T.Research on the integrated management of enterprise dangerous goods storage safety[D].Xi'an:Chang'an University,2016.(in Chinese)
    [3] 周品江,江福才,马全党.基于熵权云模型的LNG码头安全评价[J].安全与环境学报,2016,16(2):61-64.ZHOU P J,JIANG F C,MA Q D.Safety evaluation of LNG terminal based on entropy weight cloud model[J].Journal of Safety and Environment,2016,16(2):61-64.(in Chinese)
    [4] 缪克银.危险品货物海上安全运输风险模糊评判[J].中国航海,2012,35(4):76-79.MIAO K Y.Fuzzy evaluation of risk of safe maritime transport of dangerous goods[J].Navigation of China,2012,35(4):76-79.(in Chinese)
    [5] 王磊.不确定性条件下危险品仓储管理优化研究[D].成都:西南交通大学,2018.WANG L.Research on optimization of dangerous goods storage management under uncertainty[D].Chengdu:Southwest Jiaotong University,2018.(in Chinese)
    [6] 乔剑华,郭丽锦,武守元,等.浅析港口液体化工码头的装卸工艺设计[J].港工技术,2013,50(1):16-18.QIAO J H,GUO L J,WU S Y,et al.Analysis of the loading and unloading process design of the port liquid chemical terminal[J].Port Engineering Technology,2013,50(1):16-18.(in Chinese)
    [7] 宋剑伟.青岛港液体化工码头风险评估与应急措施研究[D].青岛:中国海洋大学,2011.SONG J W.Research on risk assessment and emergency measures of liquid chemical terminal in Qingdao port[D].Qingdao:Ocean University of China,2011.(in Chinese)
    [8] 信桂新,杨朝现,杨庆媛,等.用熵权法和改进TOPSIS模型评价高标准基本农田建设后效应[J].农业工程学报,2017,33(1):238-249.XIN G X,YANG C X,YANG Q Y,et al.Evaluation of post-construction effects of high-standard basic farmland using entropy weight method and improved TOPSIS model[J].Journal of Agricultural Engineering,2017,33(1):238-249.(in Chinese)
    [9] 雷勋平,邱广华.基于熵权TOPSIS模型的区域资源环境承载力评价实证研究[J].环境科学学报,2016,36(1):314-323.LEI X P,QIU G H.Empirical study on evaluation of regional resources and environmental carrying capacity based on entropy weight TOPSIS model[J].Journal of Environmental Science,2016,36(1):314-323.(in Chinese)
    [10]

    PENG M,ZHANG L.Analysis of human risks due to dam-break floods-part 1:a new model based on Bayesian networks[J].Natural Hazards,2012,64(1):903-933.

    [11]

    KHAKZAD N.Modeling wildfire spread in wildland-industrial interfaces using dynamic Bayesian network[J].Reliability Engineering&System Safety,2019,189:165-176.

    [12] 李江飞.基于贝叶斯网络的地铁项目施工风险评价研究[D].哈尔滨:哈尔滨工业大学,2013.LI J F.Research on metro project construction risk assessment based on Bayesian network[D].Harbin:Harbin Institute of Technology,2013.(in Chinese)
    [13] 周旺.交通项目社会稳定风险等级评判指标体系研究[J].西部交通科技,2016(5):82-84.ZHOU W.Research on the evaluation index system of social stability risk level of transportation projects[J].Western Transportation Science and Technology,2016(5):82-84.(in Chinese)
  • 期刊类型引用(4)

    1. 于泽民,杨文君. 针对丁醇精馏过程的故障诊断与危险源分析. 山西化工. 2025(01): 180-181+187 . 百度学术
    2. 赵冰,徐箐. 基于贝叶斯网络的航空物流供应链韧性评价. 科学技术与工程. 2025(10): 4386-4395 . 百度学术
    3. 潘洁. 基于TOPSIS-事故树和模糊贝叶斯网络的危险品运输风险评估. 中国储运. 2024(12): 64-65 . 百度学术
    4. 韩海英,张亚宁. 盐化工非金属给排水管道连接与安装研究. 盐科学与化工. 2023(09): 44-47 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  7
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 13
出版历程
  • 收稿日期:  2021-09-17

目录

    /

    返回文章
    返回