基于BO-GRU和AKDE的船舶异常行为识别

    Identification of abnormal ship behavior based on BO-GRU and AKDE

    • 摘要: 船舶异常行为识别是海事安全科学理论研究的重要组成部分,对异常行为的识别是海事监管的主要内容,对于船舶安全以及海上交通安全具有重要意义。针对船舶异常行为的识别,提出一种基于贝叶斯优化器(BO)改进的门控循环单元(GRU)BO-GRU和自适应核密度估计(AKDE)的船舶异常行为识别方法。利用BO-GRU对船舶经纬度、航向和速度进行点预测,并对基于该神经网络所得到的预测值跟实际值进行比较得到误差数据集,利用AKDE对误差数据集进行非参数估计,以得到不同置信度下的船舶轨迹特征数据波动区间。试验基于天津港船舶自动识别系统(AIS)数据,通过与基础GRU、长短期记忆网络(LSTM)和双向长短期记忆网络(Bi-LSTM)相比较,验证BO-GRU预测精度更高;AKDE相比于其他方法估计能更好地拟合,并及时发现船舶异常行为。

       

      Abstract: Identification of abnormal ship behavior is an important part of the theoretical research of maritime safety science, and the identification of abnormal behavior is the main content of maritime supervision, which is of great significance to the safety of ships and maritime traffic. In this paper, a ship abnormal behavior identification method based on BO(Bayesian Optimization) improved GRU(BO-GRU) and AKDE(Adaptive Kernel Density Estimation) is proposed. The BO-GRU is used to predict the longitude and latitude, course and speed of the ship, and the error data set is obtained by comparing the predicted value based on the neural network with the actual value. The adaptive kernel density estimation is used to estimate the error data set non parametrically, so as to obtain the fluctuation interval of the ship track characteristic data under different confidence levels. The experiment is based on the data of the AIS(Automatic Identification System) of Tianjin Port. Compared with the basic GRU, LSTM(Long Short-Term Memory) and Bi-LSTM(Bidirectional Long Short-Term Memory), the experiment verifies that BO-GRU has higher prediction accuracy; Compared with other methods, the adaptive kernel density can be better fitted and can detect the abnormal behavior of ships in time.

       

    /

    返回文章
    返回