Research on inland waterway congestion prediction method based on traffic wave theory
-
摘要: 为实现对航道拥塞度的预测,基于交通波理论提出一种考虑最大排队长度的拥塞度预测方法。模型基于船舶自动识别系统(AIS)数据提取交通流特征参数,结合船舶在不同水域的航行行为差异,提出航路特征区域划分方法。在此基础上,选取交通波理论中排队长度作为拥塞度评价指标,提出基于高斯过程回归的最大排队长度预测方法,实现对航道拥塞程度的预测。针对长江流域裕溪河段开展案例研究,结果表明:该航段2020年7月最大排队长度理论值为0.98 km,建立回归模型的Adjusted R2为0.88,预测最大排队长度1.34 km,与理论值误差0.37 km。该模型具有较高的可解释性,能实现对航道拥塞度的预测,本研究可为海事监管服务水平提升提供理论依据。Abstract: Existing studies indicate that the longer the queue length of vessels, the greater the channel saturation. To predict channel congestion, this study proposes a congestion prediction method that considers the maximum queue length based on the fundamental principles of traffic wave theory. The model utilizes Automatic Identification System(AIS) data to extract traffic flow characteristic parameters and, considering the differences in navigation behavior among ships in different waters, proposes a method for dividing the channel into characteristic areas. The queue length in traffic wave theory is selected as the evaluation index for congestion, and a method for predicting the maximum queue length based on Gaussian process regression is proposed to achieve the prediction of waterway congestion levels. A case study is conducted in the Yuxi River section of the Yangtze River Basin. The results show that the theoretical value of the maximum queue length in this section in July 2020 is 0.98 km, and the Adjusted R2 index of the established regression model is 0.88, predicting a maximum queue length of 1.34 km with an error of 0.37 km compared to the theoretical value. The research results demonstrate that the proposed model has a high degree of interpretability and can effectively predict the maximum queue length, thereby enabling the prediction of channel congestion. This study provides a theoretical basis for improving the level of maritime supervision services.
-
-
[1] 郭佳泰,王琳,李琴.去年我国水路运输市场整体稳定向好[N].中国船舶报,2023-03-24(008).GUO J T,WANG L,LI Q.Last year,China′s waterway transportation market overall stabilized and improved[N].China Ship News,2023-03-24(008).(in Chinese) [2] 管星宇,潘义勇.基于随机参数线性回归的交通流速度-密度关系模型研究[J].森林工程,2021,37(5):90-95.GUAN X Y,PAN Y Y.Research on traffic flow speed-density model based on random parameter linear regression[J].Forest Engineering,2021,37(5):90-95.(in Chinese) [3] 马庆禄,牛圣平,曾皓威,等.网联环境下混合交通流偶发拥堵演化机理研究[J].交通运输系统工程与信息,2022,22(5):97-106.MA Q L,NIU S P,ZENG H W,et al.Mechanism of non-recurring congestion evolution under mixed traffic flow with connected and autonomous vehicles[J].Journal of Transportation Systems Engineering and Information Technology,2022,22(5):97-106.(in Chinese) [4] 郑枫凡,蒋仲廉,余珍,等.基于船舶AIS数据的蜿蜒河流船舶交通波模型研究[J].武汉理工大学学报(交通科学与工程版),2023,47(3):391-395.ZHENG F F,JIANG Z L,YU Z,et al.Research on the ship traffic wave model for meandering rivers based on AIS data[J].Journal of Wuhan University of Technology (Transportation Science & Engineering),2023,47(3):391-395.(in Chinese) [5] 曾石营.基于交通波理论的吴淞口警戒区通航效率分析[J].青岛远洋船员职业学院学报,2019,40(2):49-53.ZENG S Y.Analysis of transport efficiency in wusong warning zone based on traffic wave theory[J].Journal of Qingdao Ocean Shipping Mariners College,2019,40(2):49-53.(in Chinese) [6] CETIN M,COMERT G.Short-term traffic flow prediction with regime switching models[J].Transportation Research Record,2006,1965(1):23-31.
[7] 郝勇,王怡.基于优化 RBF 网络的港口船舶交通流量预测[J].中国航海,2014(2):81-84.HAO Y,WANG Y.Ship traffic volume forecast in port based on optimized RBF neural networks[J].Navigation of China,2014(2):81-84.(in Chinese) [8] 张树奎,肖英杰,苏文明.基于一种改进型线性增长模型的船舶流量预测[J].江苏科技大学学报(自然科学版),2017,31(4):531-536.ZHANG S K,XIAO Y J,SU W M.Ship flow prediction based on an improved linear growth model[J].Journal of Jiangsu University of Science and Technology (Natural Science Edition),2017,31(4):531-536.(in Chinese) [9] 张朋,李小林,王李妍.基于DBSCAN的动态邻域密度聚类算法[J].计算机科学,2023,50(增刊1):599-605.ZHANG P,LI X L,WANG L Y.Dynamic neighborhood density clustering algorithm based on DBSCAN[J].Computer Science,2023,50(Suppl.1):599-605.(in Chinese) [10] 余贵珍,刘玉敏,金茂菁,等.基于交通波的高速公路事故的交通影响分析[J].北京航空航天大学学报,2012,38(10):1420-1424.YU G Z,LIU Y M,JIN M J,et al.Traffic impact analysis of highway accident based on the shockwave theory[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(10):1420-1424.(in Chinese) [11] 马江平.交通事故中的交通波理论分析[J].交通世界,2011(20):98-100.MA J P.Theoretical analysis of traffic waves in traffic accidents[J].Traffic Safety,2011(20):98-100.(in Chinese) [12] 马野,朱景林.船舶领域及其影响因素研究综述[J].青岛远洋船员职业学院学报,2019,40(2):32-38.MA Y,ZHU J L.Review of research on ship domain and its influencing factors[J].Journal of Qingdao Ocean Shipping Mariners College,2019,40(2):32-38.(in Chinese) [13] 白响恩,肖英杰,孙玉萍,等.基于交通波理论的北槽深水航道通航效率[J].中国航海,2014(1):61-65.BAI X E,XIAO Y J,SUN Y P,et al.Traffic efficiency of north deep-water channel based on traffic wave theory[J].Navigation of China,2014(1):61-65.(in Chinese) [14] 马峰,胡智辉,潘家财,等.海上突发事件下的航道通航效率分析[J].集美大学学报 (自然科学版),2018,23(2):119-122.MA F,HU Z H,PAN J C,et al.Analysis of navigation efficiency under maritime emergencies[J].Journal of Jimei University(Natural Science Edition),2018,23(2):119-122.(in Chinese) [15] 连强.综合区间数 Spearman 秩相关系数及其应用[J].重庆工商大学学报(自然科学版),2020,37(6):71-75.LIAN Q.The synthetic spearman rank correlation coefficient of interval numbers and its application[J].Journal of Chongqing Technology and Business University (Natural Science Edition),2020,37(6):71-75.(in Chinese) [16] 杨福芹,李天驰,冯海宽,等.基于无人机数码影像的冬小麦氮素营养诊断研究[J].福建农业学报,2021,36(3):369-378.YANG F Q,LI T C,FENG H K,et al.UAV digital image-assisted monitoring on nitrogen nutrition of winter wheat in the field[J].Fujian Journal of Agricultural Sciences,2021,36(3):369-378.(in Chinese) [17] 陈刚,王威,霍聪.基于高斯过程回归的船舶动力学模型辨识[J].舰船科学技术,2022,44(19):1-5.CHEN G,WANG W,HUO C.Identification of ship dynamics model based on Gaussian process regression[J].Ship Science and Technology,2022,44(19):1-5.(in Chinese) [18] 陈仁连.裕溪河复线船闸工作闸门门型选择与设计[J].江淮水利科技,2010(4):12-13.CHEN R L.Working voltage style chooses and design for the yuxihe double-line ship gate[J].Jianghuai Water Resources Science and Technology,2010(4):12-13.(in Chinese) [19] ZHOU H B,GUO G P,WU B.Nanjing Yangtze River bridge transit capacity based on queuing theory[J].Procedia-Social and Behavioral Sciences,2013,96:2546-2552.
计量
- 文章访问数: 15
- HTML全文浏览量: 0
- PDF下载量: 0